The Mutitjulu Arkose is believed to be of about the same age as the conglomerate at Kata Tjuta, and to have a similar origin despite the rock type being different, but it is younger than the rocks exposed to the east at Mount Conner, and unrelated to them. The strata at Uluru are nearly vertical, dipping to the south west at 85°, and have an exposed thickness of at least 2,400 m (7,900 ft). The strata dip below the surrounding plain and no doubt extend well beyond Uluru in the subsurface, but the extent is not known.
The rock was originally sand, deposited as part of an extensive alluvial fan that extended out from the ancestors of the Musgrave, Mann and Petermann Ranges to the south and west, but separate from a nearby fan that deposited the sand, pebbles and cobbles that now make up Kata Tjuta.
The similar mineral composition of the Mutitjulu Arkose and the granite ranges to the south is now explained. The ancestors of the ranges to the south were once much larger than the eroded remnants we see today. They were thrust up during a mountain building episode referred to as the Petermann Orogeny that took place in late Neoproterozoic to early Cambrian times (550–530 Ma), and thus the Mutitjulu Arkose is believed to have been deposited at about the same time.
The arkose sandstone which makes up the formation is composed of grains that show little sorting based on grain size, exhibit very little rounding and the feldspars in the rock are relatively fresh in appearance. This lack of sorting and grain rounding is typical of arkosic sandstones and is indicative of relatively rapid erosion from the granites of the growing mountains to the south. The layers of sand were nearly horizontal when deposited, but were tilted to their near vertical position during a later episode of mountain building, possibly the Alice Springs Orogeny of Palaeozoic age (400–300 Ma).
1 个回复
混元无极太上教主
赞同来自:
The Mutitjulu Arkose is believed to be of about the same age as the conglomerate at Kata Tjuta, and to have a similar origin despite the rock type being different, but it is younger than the rocks exposed to the east at Mount Conner, and unrelated to them. The strata at Uluru are nearly vertical, dipping to the south west at 85°, and have an exposed thickness of at least 2,400 m (7,900 ft). The strata dip below the surrounding plain and no doubt extend well beyond Uluru in the subsurface, but the extent is not known.
The rock was originally sand, deposited as part of an extensive alluvial fan that extended out from the ancestors of the Musgrave, Mann and Petermann Ranges to the south and west, but separate from a nearby fan that deposited the sand, pebbles and cobbles that now make up Kata Tjuta.
The similar mineral composition of the Mutitjulu Arkose and the granite ranges to the south is now explained. The ancestors of the ranges to the south were once much larger than the eroded remnants we see today. They were thrust up during a mountain building episode referred to as the Petermann Orogeny that took place in late Neoproterozoic to early Cambrian times (550–530 Ma), and thus the Mutitjulu Arkose is believed to have been deposited at about the same time.
The arkose sandstone which makes up the formation is composed of grains that show little sorting based on grain size, exhibit very little rounding and the feldspars in the rock are relatively fresh in appearance. This lack of sorting and grain rounding is typical of arkosic sandstones and is indicative of relatively rapid erosion from the granites of the growing mountains to the south. The layers of sand were nearly horizontal when deposited, but were tilted to their near vertical position during a later episode of mountain building, possibly the Alice Springs Orogeny of Palaeozoic age (400–300 Ma).
摘自: http://www.crystalinks.com/ayersrock.html
大致成因:
澳洲艾尔斯岩的形成 非常多科学家一直努力的研究探索艾尔斯岩的形成原因,澳洲沙漠中部是如何产生这样巨大的岩石。根据当地的地质研究,了解到在约 6 亿年前,艾尔斯岩所在的阿玛迪斯盆地 (Amadeus Basin) 经过地壳的巨大变动,形成两个巨大的海底岩石,而到了三亿年前,又经过了一次地壳变动后,把这两个巨岩推离了海面,经过了无数次的季节洗礼后形成了我们现在看到的世界奇景